Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C E D F 1 2
a) Vì BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 100
Nên AB2 + AC2 = BC2
Do đó: \(\Delta ABC\) vuông tại A
b) Xét hai tam giác vuông ABD và EBD có:
BD: cạnh huyền chung
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
Vậy: \(\Delta ABD=\Delta EBD\left(ch-gn\right)\)
Suy ra: DA = DE (hai cạnh tương ứng)
c) \(\Delta DAF\) vuông tại A
=> DF > DA (đường vuông góc ngắn hơn đường xiên)
Mà DA = DE
Do đó: DF > DE (đpcm)
d) Xét hai tam giác vuông ABC và EBF có:
AB = EB (\(\Delta ABD=\Delta EBD\))
\(\widehat{B}\): góc chung
Vậy: \(\Delta ABC=\Delta EBF\left(cgv-gn\right)\)
\(\Rightarrow\) BF = BC (hai cạnh tương ứng)
\(\Rightarrow\) \(\Delta BFC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường trung trực của FC
Do đó: BD là đường trung trực của đoạn thẳng FC (đpcm).
a) Ta có :
\(6^2+8^2=10^2\\ \Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( Định lí Pi-ta-go đảo )
b) Xét \(\Delta DBA\) và \(\Delta DBE\),có :
Chung cạnh BD
\(\widehat{DBA}=\widehat{DBE}\)( BD là tia phân giác )
\(\Rightarrow\Delta BDA=\Delta BDE\left(ch-gn\right)\\ \Rightarrow DA=DE\)

Giải:
Hai tam giác vuông BID và BIE có:
BI là cạnh chung
=
(gt)
nên ∆BID=∆BIE.
(cạnh huyền - góc nhọn)
Suy ra ID=IE (1)
Tương tự ∆CIE=CIF(cạnh huyền góc nhọn).
Suy ra: IE =IF (2)
Từ (1)(2) suy ra: ID=IE=IF

a) Áp dụng định lí Py Ta go cho tam giác ABC vuông tại A ta có:
BC2 = BA2 + CA2
= 62 + 82 = 100
Vậy BC = \(\sqrt{100}=10cm\)
b) Đặt Trung trực của BC cắt BC tại I
Xét tam giác BDI và tam giác CDI có:
ID chung
IB = IC
Góc BID = góc CID
Vậy tam giác BDI = tam giác CDI (c - g - c)
=> Góc DBC = DCB (2 góc tương ứng)
A B C D E I
c. ta có tam giác ECD cân tại D => góc DEC= góc DCE = (180 - góc ADC): 2 (1)
ta lại có góc BDI + góc IDC + CDE = 180 độ
=> góc BDI + góc IDC = 180- góc CDE
mà theo câu b ta có Góc BDI= góc ICD
nên ta có góc BDI= góc IDC= (180- góc CDE):2 (2)
từ (1) và (2) => góc BDI = góc DEC mà 2 góc này ở vị trí đồng vị nên EC// DI
mà DI vuong góc với BC => EC vuông góc với BC nên tgiac BCE vuông

a: Xét ΔAOC và ΔBOC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)
OC chung
Do đó:ΔAOC=ΔBOC
b: Ta có: ΔAOC=ΔBOC
nên CA=CB và \(\widehat{OCA}=\widehat{OCB}\)
hay CO là tia phân giác của góc BCA

a) Xét ∆ vuông DEC và ∆ vuông DBC ta có :
ECD = BCD ( CD là phân giác)
DC chung
=> ∆DEC = ∆DBC (ch-gn)
b) Xét ∆ vuông AED có :
AD > ED
=> DE = BD
=> AD> DB
a: Xét ΔCAD vuông tại A và ΔCED vuông tại E có
CD chung
\(\widehat{ACD}=\widehat{ECD}\)
Do đó: ΔCAD=ΔCED
Suy ra: CA=CE
b: Ta có: DA=DE
mà DE<DB
nên DA<DB