
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{1}{2}\)* \(\frac{1}{4}\)* \(\frac{1}{8}\)* \(\frac{1}{16}\)* \(\frac{1}{32}\)= \(\frac{1}{32768}\)
k cho mình nhé !

a=511/256
b=647/20
c=mình đang suy nghĩ,nhưng nếu bạn k cho mình thì bạn sẽ có câu trả lời
a. 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
= 1 + ( 1 - 1/2) + ( 1/2 - 1/4) + ( 1/4 - 1/8) + ( 1/8 - 1/16) + ( 1/16 - 1/32) + (1/32 - 1/64) + ( 1/64 - 1/128) + (1/128 - 1/256)
= 1 + 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256
= 2 - 1/256
= 511/256
Câu b bạn có viết sai đề không vậy?


Câu a:
A = \(\frac{1}{2\times3}\) + \(\frac{1}{3\times4}\) + \(\frac{1}{4\times5}\) + \(\frac{1}{5\times6}\) + \(\frac{1}{6\times7}\) + \(\frac{1}{7\times8}\)
A = \(\frac12-\frac13\) + \(\frac13-\frac14\) + \(\frac14-\frac15\) + \(\frac15-\frac16\) + \(\frac16-\frac17\) + \(\frac17-\frac18\)
A = \(\frac12-\frac18\)
A = \(\frac38\)
Câu b:
A = \(\frac12\) + \(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) + \(\frac{1}{64}\) + \(\frac{1}{128}\) + \(\frac{1}{256}\)
2 x A = 1 + \(\frac12\) + \(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) + \(\frac{1}{64}\) + \(\frac{1}{128}\)
2 x A - A = 1 + \(\frac12\) +\(\frac14\) + \(\frac18\) + \(\frac{1}{16}\) + \(\frac{1}{32}\) + \(\frac{1}{64}\) + \(\frac{1}{128}\) - \(\frac12-\frac14\) -...-\(\frac{1}{128}\) -\(\frac{1}{256}\)
A x (2 - 1) = (1 - \(\frac{1}{256}\)) + (\(\frac12\)-\(\frac12\)) +...+(\(\frac{1}{128}\) - \(\frac{1}{128}\))
A = 1 - \(\frac{1}{256}\) + 0 + 0+...+ 0
A = \(\frac{255}{256}\)

2A=1+1/2+1/4+1/8+1/16+1/32+1/64
2A-A=(1+1/2+1/4+1/8+1/16+1/32+1/64)-(1/2+1/4+1/8+1/16+1/32+1/64+1/128)
A=1-1/128
A=127/128
A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
suy ra: 2A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
2A - A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 - 1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128
A = 1 - 1/128 = 127/128
hok tốt


A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)+.....+ \(\dfrac{1}{134}\)+ \(\dfrac{1}{268}\)
A \(\times\) 2 = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) +.....+ \(\dfrac{1}{134}\)
A \(\times\) 2 - A = 1 - \(\dfrac{1}{268}\)
A \(\times\) ( 2 - 1) = \(\dfrac{267}{268}\)
A = \(\dfrac{267}{268}\)

1/2+1/4+1/8+1/16+1/32+1/64
Ta thấy:
1/2=1/1-1/2
1/4=1/2-1/4
1/8=1/4-1/8....
1/64=1/32-1/64
A= 1/1-1/2+1/2-1/4+1/4-1/8+.....+1/32-1/64
A=1 - 1/ 64
A= 63/64
\(\frac{32}{64}+\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{64}+\frac{1}{64}=\frac{63}{64}\)\(\frac{63}{64}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}\)
\(=1-\frac{1}{32}\)
\(=\frac{31}{32}\)
1+2+5+6+8+2+5+2+1+7+9+8+9+7+7+5+8+5 giải họ em