Hệ thống học trực tuyến. Trường Tiểu học Đoàn Thị Điểm Hà Nội

Nguyễn Thị Huyền Trang

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Thị Huyền Trang
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

vì 5070 là số chẵn ⇒ một trong 3 số a,b,c chẵn hoặc cả 3 số a,b,c chẵn 

+) cả 3 số a,b,c chẵn

=> a=2, b=2, c=2 ( vì a,b,c là các số nguyên tố )

khi đó: a2+b2+c2= 12(loại)

=> một trong 3 số a,b,c chẵn 

vì giá trị các số bằng nhau, giả sử a chẵn => a=2

khi đó: a2+b2+c2= 4+b2+c2

=> b2+c2= 5066

vì số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 mà b2 và c2 là số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 

=> bvà c2 có tận cùng là 0, 1, 4, 5, 6, 9 

Mà b và c lẻ 

=> bvà c2 có tận cùng là 1, 5, 9 

mà 5066 có tận cùng là 6

=> bvà c2 có tận cùng là 1, 5

=> b và c có tận cùng là 1, 5

giả sử b có tận cùng là 5=> b=5

khi đó: 25+ c= 5066

                   c= 5041=712

=> c = 71

vậy, a=2, b=5, c=71 và các hoán vị của nó

S=4+32+33+...+3223

S=1+3+32+33+...+3223

S=(1+34)+(3+35)+(32+36)+(33+37)+...+(3119+3223)

S=82+3(1+34)+32(1+34)+33(1+34)+...+3119(1+34)

S=82+3.82+32.82+33.82+...+3119.(1+34)

S=82(3+32+33+...+3119)

vì 82⋮41⇒S⋮41

Vậy S⋮41

S=4+32+33+...+3223

S=1+3+32+33+...+3223

S=(1+34)+(3+35)+(32+36)+(33+37)+...+(3119+3223)

S=82+3(1+34)+32(1+34)+33(1+34)+...+3119(1+34)

S=82+3.82+32.82+33.82+...+3119.(1+34)

S=82(3+32+33+...+3119)

vì 82⋮41⇒S⋮41

Vậy S⋮41

S=4+32+33+...+3223

S=1+3+32+33+...+3223

S=(1+34)+(3+35)+(32+36)+(33+37)+...+(3119+3223)

S=82+3(1+34)+32(1+34)+33(1+34)+...+3119(1+34)

S=82+3.82+32.82+33.82+...+3119.(1+34)

S=82(3+32+33+...+3119)

vì 82⋮41⇒S⋮41

Vậy S⋮41

S   = 1/3 + 1/3^2 + 1/3^3 + 1/3^4 + ... + 1/3^99 + 1/3^100

3S = 1 +1/3 +1/3^2 +1/3^3 + ... + 1/3^98 +1/3^99

3S - S = ( 1 + 1/3 + 1/3^2 +1/^3 + ... + 1/3^98 +1/3^99 ) - ( 1/3 + 1/3^2 + 1/3^3 + 1/3^4 +... + 1/3^99 + 1/3^100 )

2S = 1 - 1/3^100

S   = (1 - 1/3^100). 1/2

2xy + x + y = 7

x(2y + 1) + y = 7

2.[x(2y +1) + y ] = 2.7

2x(2y + 1) + 2y = 14

2x(2y+1) + 2y + 1 = 14 +1

2x(2y+1) + (2y +1) = 15

(2y+1).(2x+1)   = 15

Vì x, y thuộc Z nên 2x+1 và 2y+1 là ước của 15

*(mình làm đến đây bạn tự kẻ bảng nhé)