Hệ thống học trực tuyến. Trường Tiểu học Đoàn Thị Điểm Hà Nội

Nguyễn Huy Tú

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Huy Tú
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

\(2x\left(1-7x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{7}\end{matrix}\right.\)

\(x\left(x-5\right)-\left(x-5\right)=0\Leftrightarrow\left(x-1\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Xét tam giác AEB và tam giác CFD ta có 

AB = CD (tứ giác ABCD là hbn); ^ABE = ^CDF ( soletrong ) ; DF = BE (gt) 

Vậy tam giác AEB = tam giác CFD ( c.g.c ) 

=> AE = FC ( 2 cạnh tương ứng ) (1)

tương tự với tam giác AFD = tam giác EBC 

=> AF = EC (2) 

Từ (1) ; (2) => tứ giác AECF là hbh => AE // CF 

 

\(x-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

x-2 1 -1 3 -3 9 -9
x 3 1 5 -1 11 -7

Có 6 số nguyên x 

\(I=\dfrac{E}{r+R}=0,93\) chọn D

a, Xét (ABCD) có AC giao BD = O 

Xét (SAC);(SBD) có 

S là điểm chung t1; O là điểm chung t2 

=> SO là giao tuyến 2 mp trên 

b, Xét tam giác SDC có PN là đường tb tam giác 

=> NP // SC ; SC \(\subset\)(SBC) 

=> NP // (SBC) 

b, Xét (ABCD) kẻ MN cắt AD tại K 

Do K thuộc AD => K \(\subset\)(SAD) 

=> PK giao SA tại Q

Xét tam giác MNC và tam giác KND có 

^NMC = ^KND (sole) ; NC = ND (N là trung điểm); ^MNC = ^KND = ^KND (đối đỉnh) 

=> tam giác MNC = tam giác KND (g.c.g) 

=> DK = MC  (2 cạnh tương ứng) 

=> \(\dfrac{AK}{AD}=\dfrac{AD+DK}{AD}=\dfrac{AD+MC}{AD}=\dfrac{AD+\dfrac{BC}{2}}{AD}=\dfrac{AD+\dfrac{AD}{2}}{AD}=\dfrac{3}{2}\)

Do AD = BC ( ABCD là hbh) 

Xét tam giác DSC có \(\dfrac{DP}{SP}=\dfrac{DN}{NC}=1\)theo Ta lét, N là trung điểm DC

Theo Menelaus ta có 

\(\dfrac{SQ}{SA}.\dfrac{AI}{AD}.\dfrac{DP}{SP}=1\Leftrightarrow\dfrac{SQ}{SA}.\dfrac{3}{2}=1\Leftrightarrow\dfrac{SQ}{SA}=\dfrac{2}{3}\)

 

\(lim\left(\dfrac{n^2+1-n^2}{\sqrt{n^2+1}+n}\right)=lim\dfrac{1}{n\left(\sqrt{1+\dfrac{1}{n^2}}+1\right)}=0\)

\(A=-4x^2+3x=-\left(2x\right)^2+\dfrac{2.2x.3}{4}-\dfrac{9}{4}+\dfrac{9}{4}=-\left(2x-\dfrac{3}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

Dấu ''='' xảy ra khi x = 3/4 

\(B=-y^2+y=-\left(y^2-y\right)=-\left(y^2-y+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

Dấu ''='' xảy ra khi y = 1/2 

\(2x^2y+4xy^2+2y^2-8y=2y\left(x^2+2xy+y-4\right)\)