Hệ thống học trực tuyến. Trường Tiểu học Đoàn Thị Điểm Hà Nội

Trần Phương Hân

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Trần Phương Hân
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) Tứ giác ABCD có hai đường chéo AC,BD cắt nhau tại trung điểm N của mỗi đường nên là hình bình hành.

b) Ta có AP⊥BCAQ // BC suy ra AP⊥AQ.

Tứ giác APCQ có ba góc vuông nên là hình chữ nhật.

Khi đó hai đường chéo AC,PQ cắt nhau tại trung điểm của mỗi đường, mà NA=NC nên N là trung điểm của PQ.

Suy ra P,N,Q thẳng hàng.

c) Để tứ giác ABCD là hình vuông thì ta cần AB⊥BC,AB=BC hay ΔABC vuông cân tại B.

a) Tứ giác ADME có DAE^=D^=E^=90∘ nên ADME là hình chữ nhật.

b) Vì DM⊥AB và AC⊥AB nên DM // AC suy ra C^=BMD^ (so le trong).

Xét ΔDMB và ΔECM có:

     D^=E^=90∘

     BM=CM (giả thiết)

     DMB^=C^ (so le trong)

Vậy ΔDMB=ΔECM (cạnh huyền - góc nhọn)

Suy ra ME=BD (hai cạnh tương ứng) mà ME=AD nên AD=BD.

Tứ giác AMBI có hai đường chéo AB,MI cắt nhau tại D là trung điểm của mỗi đường nên là hình bình hành.

Mà MI⊥AB suy ra AMBI là hình thoi.

c) Để AMBI là hình vuông thì AM⊥BM hay AM vừa là đường trung tuyến vừa là đường cao nên ΔABC vuông cân tại A.

d) Giả sử AM cắt PQ tại F và PQ cắt AH tại O.

Khi đó ΔOAQ có OA=OQ nên  ΔOAQ cân tại O suy ra Q1^=OAQ^

ΔAMC cân tại M suy ra A1^=C^

Do đó, A1^+Q1^=C^+OAQ^=90∘

Suy ra ΔFAQ vuông tại F hay AM⊥PQ.

a) Tứ giác ADME có DAE^=D^=E^=90∘ nên ADME là hình chữ nhật.

b) Vì DM⊥AB và AC⊥AB nên DM // AC suy ra C^=BMD^ (so le trong).

Xét ΔDMB và ΔECM có:

     D^=E^=90∘

     BM=CM (giả thiết)

     DMB^=C^ (so le trong)

Vậy ΔDMB=ΔECM (cạnh huyền - góc nhọn)

Suy ra ME=BD (hai cạnh tương ứng) mà ME=AD nên AD=BD.

Tứ giác AMBI có hai đường chéo AB,MI cắt nhau tại D là trung điểm của mỗi đường nên là hình bình hành.

Mà MI⊥AB suy ra AMBI là hình thoi.

c) Để AMBI là hình vuông thì AM⊥BM hay AM vừa là đường trung tuyến vừa là đường cao nên ΔABC vuông cân tại A.

d) Giả sử AM cắt PQ tại F và PQ cắt AH tại O.

Khi đó ΔOAQ có OA=OQ nên  ΔOAQ cân tại O suy ra Q1^=OAQ^

ΔAMC cân tại M suy ra A1^=C^

Do đó, A1^+Q1^=C^+OAQ^=90∘

Suy ra ΔFAQ vuông tại F hay AM⊥PQ.

a) Tứ giác AEDF có EAF^=AED^=AFD^=90∘ nên là hình chữ nhật.

ΔABC vuông cân tại A có AM là trung tuyến nên AM cũng là đường phân giác EAF^.

Hình chữ nhật AEDF có đường chéo AD là tia phân giác EAF^ nên là hình vuông.

b) ΔAEF vuông tại A có AE=AF nên vuông cân tại A

Suy ra F1^=45∘=C^ mà F1^,C^ đồng vị nên EF // BC.

c) Gọi O là giao của AD với EF suy ra OE=OD=OF=OA

ΔENF vuông tại N có NO là đường trung tuyến nên NO=EO=FO

ΔAND có NO là đường trung tuyến mà NO=AD2 suy ra ΔAND vuông tại N.

a) Ta có AD=BC suy ra AD2=BC2 nên MC=ND và MC // ND

Do đó, MCDN là hình bình hành.

Lại có CD=AB=AD2=ND nên MCDN là hình thoi

b) BM // AD suy ra ABMD là hình thang.

Mà ADC^=120∘ mà DM là phân giác ADC^ nên ADM^=60∘=BAD^.

Vậy ABMD là hình thang cân.

c) ΔKAD có KAD^=KDA^ nên là tam giác cân.

Xét ΔMBK và ΔMCD có:

     MB=MC (giả thiết)

     M1^=M2^ (đối đỉnh)

     B1^=C^ (so le trong)

Vậy ΔMBK=ΔMCD (g.c.g) suy ra MK=MD (hai cạnh tương ứng).

Khi đó AM là đường trung tuyến và BK=CD (hai cạnh tương ứng)

Mà CD=AB suy ra AB=BK hay DB là đường trung tuyến.

Khi đó, ΔKAD có ba đường trung tuyến AM,BD,KN đồng quy.

a) Ta có O1^+O3^=90∘ và O2^+O3^=90∘ suy ra O1^=O2^.

Mặt khác A1^=B1^=45∘.

Xét ΔAOP và ΔBOR có

    OA=OB ( giả thiết)

    A1^=B1^=45∘

    O1^=O2^ (chứng minh trên)

Suy ra ΔAOP=ΔBOR (g.c.g)

b) Từ ΔAOP=ΔBOR suy ra OP=OR (hai cạnh tương ứng)

Chứng minh tương tự cho ΔOBR=ΔOCQ và ΔOCQ=ΔODS

Suy ra OR=OQ và OQ=OS.

Khi đó OP=OR=OS=OQ.

c) Tứ giác PRQS là hình thoi vì có bốn cạnh bằng nhau.

Mà ΔOPR có OP=OR và POR^=90∘ nên ΔOPR là tam giác vuông cân tại O

Suy ra P1^=45∘.

Tương tự P2^=45∘ nên RPS^=P1^+P2^=90∘.

Hình thoi PRQS có RPS^=90∘ nên nó là hình vuông.

 là hình vuông nên ��=��=��=��

M��=��=��=��.

Trừ theo vế ta được ��−��=��−��=��−��=��−��

Suy ra ��=��=��=��

Xét tam giác QAM và tam giác NPC có:

góc A = góc C = 90 độ

AQ=NC(cmt)

AM=CP(gt)

=>Tam giác QAM= tam giác NPC(c.g.c)

c)=> NP = MQ ( hai cạnh tương ứng)

Chứng minh tương tự như phần b ta có: Tam giác QAM= tam giác PDQ và tam giác QAM= tam giác MBN

Khi đó: MQ=PQ, MN=MQ và góc AMQ= góc DQP

Mà góc AMQ+AQM=90 độ

=>góc DQP+ góc AQM= 90 độ

Do đó góc MQP = 90 độ

tứ giác MNPQ có bốn cạnh bằng nhau nên là hình thoi

Lại có góc MQP = 90 độ nên là hình vuông

Vậy tứ giác MNPQ là hình vuông

a) Tứ giác DKMN có 3 góc D=K=N= 90 độ

=> Tg DKMN là hình chữ nhật

Vậy tg DKMN là hình chữ nhật

b) Vì DKMN là hình chữ nhật nên DF//MH 

Xét 2 tam giác KFM và NME có:

góc K= góc N = 90 độ

FM=ME(gt)

góc KMF = góc E( đồng vị)

=> Tam giác KFM = tam giác NME (cạnh huyền-góc nhọn)

=>KF=MN( hai cạnh tương ứng) mà MN=DK nên DF=2DK và MH=2MN

Do đó DF=MH

Tứ gáic DFMH có DF//MH, DF=MH nên là hình bình hành

Do đó hai đường chéo DM,FH cắt nhau tại trung điểm O của mỗi đường hay F,O,H thẳng hàng

Vậy 3 điểm F,O,H thẳng hàng

c) Để hình chữ nhật DKMN là hình vuông thì DK=DN(1)

Mà DK=1/2DF và DN=KM=NE nên DN=1/2DE(2)

Từ (1),(2) suy ra DF=DE

Vậy tam giác DFE cần thêm điều kiện cân tại D

Ta có

IA=IC (gt); IM=IK (gt) => AMCK là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Ta có

MB=MC (gt); IA=IC (gt) => MI là đường trung bình của tg ABC => MI//AB

Mà AB⊥AC 

⇒MI⊥AC⇒MK⊥AC

=> AMCK là hình thoi (Hình bình hành có 2 đường chéo vuông góc là hình thoi)

b/

Ta có

MI//AB (cmt) => MK//AB

AK//MC (cạnh đối hbh AMCK) => AK//MB

=> AKMB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

c/

Để AMCK là hình vuông ⇒AM⊥BC => AM là đường cao của tg ABC

Mà AM là trung tuyến của tg ABC (gt)

=> ABC cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tg cân)

=> Để AMCK là hình vuông thì tg ABC vuông cân tại A

Tam giácBHE vuông tại H có góc BEH + góc B = 90 độ

Suy ra góc BEH = 90 độ - 45 độ = 45 độ nên góc B= góc BEH = 45 độ

Vậy tam giác BEH vuông tại H

b) Chứng minh tương tự như câu a ta được tam giác CFG vuông tại G nên GF=GC và HB=HE

Lại có BH=HG=GC suy ra EH=HG=GF và EH//FG ( cùng vuông góc với BC)

Tứ giác EFGH có EH//FG, EH=FG

=>tứ giác EFGH là hình bình hành 

Xét hình bình hành có một góc vuông là góc H nên là hình chữ nhật

Mà hình chữ nhật có hai cạnh kề bằng nhau là EH=HG nên là hình vuông

Vậy EFGH là hình vuông